Intramural Comparison of NIST Laser and Optical Fiber Power Calibrations

نویسندگان

  • John H. Lehman
  • Igor Vayshenker
  • David J. Livigni
  • Joshua Hadler
چکیده

The responsivity of two optical detectors was determined by the method of direct substitution in four different NIST measurement facilities. The measurements were intended to demonstrate the determination of absolute responsivity as provided by NIST calibration services at laser and optical-communication wavelengths; nominally 633 nm, 850 nm, 1060 nm, 1310 nm, and 1550 nm. The optical detectors have been designated as checks standards for the purpose of routine intramural comparison of our calibration services and to meet requirements of the NIST quality system, based on ISO 17025. The check standards are two optical-trap detectors, one based on silicon and the other on indium gallium arsenide photodiodes. The four measurement services are based on: (1) the laser optimized cryogenic radiometer (LOCR) and free field collimated laser light; (2) the C-series isoperibol calorimeter and free-field collimated laser light; (3) the electrically calibrated pyroelectric radiometer and fiber-coupled laser light; (4) the pyroelectric wedge trap detector, which measures light from a lamp source and monochromator. The results indicate that the responsivity of the check standards, as determined independently using the four services, agree to within the published expanded uncertainty ranging from approximately 0.02 % to 1.24 %.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Fiber Power Meter Calibrations at NIST

The optical fiber power meter (OFPM) is perhaps the most common type of test equipment used to support the development and implementation of optical fiber systems. To address the inherent metrology requirements, NIST has developed and implemented measurement services to help characterize these instruments [1]. These measurement services consist primarily of absolute laser power calibrations usi...

متن کامل

Using of Broadened Asymmetric Waveguide Structure for 980nm Diode Laser

Laser diode beam divergence is the main parameter for beam shaping and fiber optic coupling. Increasing the waveguide layer thickness is the conventional method to decrease the beam divergence. In this paper, the broadened asymmetric waveguide is introduced to decrease the divergence without increasing the optical power. The asymmetric waveguide was used to shift the vertical optical field to n...

متن کامل

Composite Cavity Fiber Laser with Asymmetric Output Intensity and Wavelength

The composite cavity fiber laser (CCFL) is relatively simple in its fabrication, as it is essentially three wavelength matched Bragg gratings in a section of doped fiber. By using internal feedback with unequal sub-cavity lengths, unidirectional CCFLs with significantly asymmetric output power from its two outputs can be achieved. Preliminary results also show that it is possible for the lasing...

متن کامل

Optical-Fiber Power Meter Comparison Between NIST and PTB

We describe the results of a comparison of reference standards between the National Institute of Standards and Technology (NIST-USA) and National Institute of Metrology (NIM-China). We report optical fiber-based power measurements at nominal wavelengths of 1310 nm and 1550 nm. We compare the laboratories' reference standards by means of a commercial optical power meter. Measurement results show...

متن کامل

Design and Application of a Photoacoustic Sensor for Monitoring the Laser Generated Stress Waves in Optical Fiber

Measurement of stress transients generated by a 400ns pulsed HF laser in an infrared fluoride glass fiber has been made using fast time – response piezoelectric film transducer. Acoustic signals up to 12 mV with frequencies ranging in megahertz generated by 21 mJ laser pulse when passed through the fiber axis in the linear region. It is shown that useful information such as onset of non - linea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2004